¹³B β ⁻n decay:17.30 ms 1969Jo21,1974Al12

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017

Parent: ¹³B: E=0; $J^{\pi}=3/2^-$; $T_{1/2}=17.30$ ms 17; $Q(\beta^-n)=8490.6$ 10; % β^-n decay=0.286 37

¹³B-T_{1/2}: From average of (2008ReZZ,1995ReZZ,1988Sa04,1971Wi07,1962Ma19).

¹³B-Q(β -n): from (2017Wa10).

1969Jo21: A beam of 3 MeV tritons impinged on a thick ¹¹B target producing ¹³B nuclei via the ¹¹B(t,p) reaction. The target was irradiated for 3 ms, while counting lasted for 12 ms. The target was surrounded by a 3 inch by 2 inch beta counter scintillator, a 1 inch thick by 8 inch diameter NE102 neutron detector and a 5 inch by 5 inch NAI gamma-ray detector. Neutron energies were determined by time-of-flight between the beta and neutron detectors. population of relatively strong neutron branches from ¹³C*(7.5,8.86 MeV) were observed. Significantly stronger branches to ¹³C*(0,3.68 MeV) were deduced from the beta- and beta-gamma spectra (92.1% and 7.6%, respectively).

1974A112: The experimental setup was similar to (1969Jo21), except a longer neutron flight path was used and higher statistics were obtained. Weaker branches from ¹³C*(8.86,9.90 MeV) were observed, and an upper limit on decay from ¹³C*(9.50 MeV) was established.

¹²C Levels

$$\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi \dagger}}{0^{+}}$$
4439.82 21 2+

† From Adopted Levels.

 γ (12C)

$$\frac{\text{E}_{\gamma}}{4439} = \frac{\text{I}_{\gamma}^{\dagger}}{0.001} = \frac{\text{E}_{i}(\text{level})}{4439.82} = \frac{\text{J}_{i}^{\pi}}{2^{+}} = \frac{\text{E}_{f}}{0.0} = \frac{\text{J}_{f}^{\pi}}{0^{+}}$$

Delayed Neutrons (12C)

E(n) [†]	E(12C)	$I(n)^{\ddagger}$	E(13C)
472 5	4439.82	≈0.001	9897
2401 3	0.0	0.094 20	7547
3613 <i>18</i>	0.0	0.16 3	8860
4203.2 <i>1</i>	0.0	< 0.01	9500
4570 <i>5</i>	0.0	0.022 7	9897

 $^{^{\}dagger}$ E(n) deduced from Q (2017Wa10) and 13 C/ 12 C level energies in ENSDF.

[†] Absolute intensity per 100 decays.

[‡] Absolute intensity per 100 decays.

13 B β^- n decay:17.30 ms 1969Jo21,1974Al12

Decay Scheme

 γ Intensities: I_{γ} per 100 parent decays I(n) Intensities: I(n) per 100 parent decays

